
CS 61C
Spring 2024

Yan, Yokota
Final

Print Your Name:

Print Your Student ID:

You have 170 minutes. There are 10 questions of varying credit and difficulty (100 points total).

Question: 1 2 3 4 5 6 7 8 9 10 Total

Points: 12 12 13 10 13 10 9 8 13 0 100

For questions with circular bubbles,
you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

Don’t do this (it will be graded as incorrect)

For questions with square checkboxes,
you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the worst
interpretation. For coding questions with blanks, you may write at most one statement per blank and you
may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xDEADBEEF instead of 0xdeadbeef).
For hex and binary, please include prefixes in your answers unless otherwise specified, and do not truncate
any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 20

Q1 61Collection (Potpourri) (12 points)

Q1.1 (1 point) Convert the 8-bit unsigned binary 0b0001 1011 to decimal, treating it as an unsigned
integer.

Q1.2 (1 point) Convert the decimal -510 to a 12-bit two’s complement hexadecimal. If it cannot be
represented, write “None”.

Q1.3 (1.5 points) What value does 0x61C0 0000 represent, if interpreted as an IEEE-754 single precision
floating point number? Express your answer as 𝑥 × 2𝑦, where 𝑥 is a base-10 number such that
1 ≤ |𝑥| < 2 and 𝑦 is a base-10 integer. For NaN, infinities, or zeros, please leave the boxes blank
and fill in the corresponding bubble. Otherwise, leave the bubbles blank.

𝑥 = 𝑦 =
+∞

−∞

+0

−0

NaN

Q1.4 (0.5 points) A user program can request an operating system service, such as printing a string or
reading a file, by issuing a system call.

True False

For Q1.5 – Q1.7 indicate the stage of CALL that...

Q1.5 (0.5 points) ...produces pseudoinstructions.

Compiler Assembler Linker Loader

Q1.6 (0.5 points) ...produces machine code for the RISC-V instruction bne x0 x0 8.

Compiler Assembler Linker Loader

Q1.7 (0.5 points) ...produces machine code for the RISC-V instruction la t0 magic_num, assuming
that magic_num is a label that points to the data segment.

Compiler Assembler Linker Loader

Q1.8 (1.5 points) Suppose we have two 16-bit integer arrays, each with 73 elements, and we want
to compute their element-wise product. If our RISC-V CPU has 128-bit registers and supports
vmul, an instruction that performs 16-bit elementwise vector multiplication, what is the minimum
number of mul and vmul instructions required to multiply these two vectors?

Instructions

Final (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 20 CS 61C – Spring 2024

(Question 1 continued…)

Q1.9 (1.5 points) Suppose we have a program that takes 20 minutes to complete on a system with one
core and takes 10 minutes to complete on a system with four cores. What fraction of this program
is parallelizable? Express your answer as a simplified fraction.

Q1.10 (1.5 points) Given a cache with a hit rate of 80%, a hit time of 5 cycles, and a miss penalty of 20
cycles, what is the Average Memory Access Time (AMAT) for the system? Express your answer as
an integer, rounding up if necessary.

For Q1.11 – Q1.14, choose which section of memory the value would live in. Assume this program
compiles successfully.

1 int ada_mango(int adam) { return adam * adam; }
2 int main(int argc, char *argv[]) {
3 int *facade = malloc(sizeof(int) * 23);
4 char *brun = "lebrun";
5 return 0;
6 }

Q1.11 (0.5 points) facade

Stack Heap Static Code

Q1.12 (0.5 points) *facade

Stack Heap Static Code

Q1.13 (0.5 points) *brun

Stack Heap Static Code

Q1.14 (0.5 points) adam

Stack Heap Static Code

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 20 CS 61C – Spring 2024

Q2 61C16 (RISCV) (12 points)
A palindrome is a sequence of characters that reads the same backward and forward. For example,
“civic” and “redder” are palindromes, but “wave” and “canal” are not palindromes.

Implement the RISC-V function find_palindrome that takes as input a nonempty null-terminated
string in a0 and its length (excluding the null-terminator) in a1. The function should return 1 in a0
if the string is a palindrome and 0 in a0 otherwise. Assume the input string contains only lowercase
letters.

You may only use registers a0, a1, t5 and t6.

1 find_palindrome:

2 add
Q2.1

3 loop:

4
Q2.2

5
Q2.3

t5 0(a0)

6
Q2.4

t6 0(a1)

7
Q2.5

not_palindrome

8
Q2.6

9
Q2.7

10 addi
Q2.8

11
Q2.9

12 not_palindrome:

13 mv
Q2.10

14 jr ra

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 20 CS 61C – Spring 2024

Q3 61Control Logic (13 points)
Consider the standard 5-stage pipeline included in the CS 61C Reference Card. For each of the control
logic signals below, indicate which stage the control signal would be used.

Q3.1 (1 point) BrUn

IF ID EX M WB

Q3.2 (1 point) RegWEn

IF ID EX M WB

Q3.3 (1 point) MemRW

IF ID EX M WB

Q3.4 (1 point) WBSel

IF ID EX M WB

Q3.5 (3 points) Consider the following RISC-V code:

1 addi t3 x0 8
2 addi t4 x0 6
3 lw t1 0(t3)
4 bne t3 t4 label
5 addi t3 t3 4
6 label:
7 addi x0 x0 0

Identify the first four hazards that occur when the above program is run on the standard 5-
stage pipeline included in the CS 61C Reference Card. Assume that the register file implements
write-then-read (i.e. it allows reading out the data being written in the same cycle).
For each hazard, indicate the type of hazard and the line number(s) of the instruction(s) involved.
If there are fewer than four hazards, select “None” for the unused rows.

Hazard 1:
Structural

Data

Control

None

Hazard 2:
Structural

Data

Control

None

Hazard 3:
Structural

Data

Control

None

Hazard 4:
Structural

Data

Control

None

Final (Question 3 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 20 CS 61C – Spring 2024

(Question 3 continued…)

We can mitigate some hazards by adding a forwarding path from the ALU result directly back into the
execute stage.
For Q3.6 – Q3.12 on the following page, assume we are working with the standard 5-stage pipeline
included in the CS 61CReference Cardwith themodifications shown below to implement this forwarding
path. The diagram shows a subset of the datapath (specifically the EX stage), and modifications are
shown in dotted lines.

Final (Question 3 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 20 CS 61C – Spring 2024

(Question 3 continued…)

Q3.6 (1 point) What type of hazard does this forwarding path attempt to mitigate?

Structural Data Control

The described implementation introduces two new control signals: AFwd and BFwd. These control
signals determine which, if any, forwarding path should be used. If a stall is unavoidable, AFwd and
BFwd may be either 0 or 1. Assume instruction bits are zero-indexed.
For the two boxed statements below, fill in the blanks such that they correctly describe AFwd and BFwd.

AFwd should be 1 only when
– bits Q3.7 (inclusive) of the instruction in EX are nonzero and equal to bits Q3.8 (inclusive) of the

instruction in M and
– all of the selected conditions in Q3.9 are true.

Q3.7 (0.5 points) bits to

Q3.8 (0.5 points) bits to

Q3.9 (1.5 points) Select as few conditions as possible to maintain the correct behavior.

The instruction in M writes to rd

The instruction in M is not a load

The instruction in EX is not a store

The instruction in EX uses rs1

The instruction in EX uses rs2

None of the above

BFwd should be 1 only when
– bits Q3.10 (inclusive) of the instruction in EX are nonzero and equal to bits Q3.11 (inclusive) of

the instruction in M and
– all of the selected conditions in Q3.12 are true.

Q3.10 (0.5 points) bits to

Q3.11 (0.5 points) bits to

Q3.12 (1.5 points) Select as few conditions as possible to maintain the correct behavior.

The instruction in M writes to rd

The instruction in M is not a load

The instruction in EX is not a store

The instruction in EX uses rs1

The instruction in EX uses rs2

None of the above

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 20 CS 61C – Spring 2024

Q4 61CO (FSM) (10 points)

Q4.1 (4 points) We are designing an FSM for a carbon monoxide (CO) detector that receives input every
half-second. A 0 indicates normal CO levels, and a 1 indicates dangerous levels. When at least
two of the last three inputs are 1, the detector activates and outputs 1’s indefinitely. When not
yet activated, it outputs 0’s. The FSM starts in state 00. Complete the transition table below
to match this behavior, filling in the next state and output for each row. Some boxes are
pre-filled for you.
For example, if the input to this FSM was 0b01 0010 1011 1000 1001,

the output should be 0b00 0000 1111 1111 1111.
– CS and NS represent the Current State and Next State of the FSM respectively
– In represents the input to the FSM (whether or not the CO level is dangerous)
– Out represents the output of the FSM (whether or not the detector is activated)

CS In NS Out

00 0 00 0

00 1

01 0 10

01 1

10 0

10 1

11 0 11

11 1

Q4.2 (2 points) We want to make our detector more sensitive. Now, the detector should output 1’s
indefinitely if two of the last 12 samples are 1’s. What is the minimum number of states required
to implement this updated detector as an FSM?

Final (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 20 CS 61C – Spring 2024

(Question 4 continued…)

Q4.3 (4 points) A state transition table for a different FSM is shown below. Complete the circuit below
to implement this FSM using only AND, OR, and NOT gates. Your implementation should minimize
the critical path delay. Assume wires have negligible delay and each logic gate has the same delay.

CS In NS Out

00 0 00 0

00 1 01 0

01 0 00 0

01 1 11 0

10 0 00 1

10 1 01 1

11 0 00 1

11 1 11 0

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 20 CS 61C – Spring 2024

Q5 61Caches (13 points)
Suppose our computer has 64KiB of memory and a 32B direct-mapped cache with 8B blocks.

Q5.1 (1.5 points) How many tag, index, and offset bits are in each address?

T: I: O:

For Q5.2 – Q5.10, consider running the following program on our computer, assuming the cache starts
off cold.

1 #define NUM_INTS 24
2 int32_t arr[NUM_INTS + 2]; // arr is located at address 0x2000
3 for (register int32_t i = 0; i < NUM_INTS; i += 1) {
4 arr[i + 2] = arr[i + 1] + arr[i]; // arr[i + 1] is accessed before arr[i]
5 }

Q5.2 (1 point) For each iteration of the for loop, how many memory accesses are there?

Q5.3 (1 point) For the first iteration of the for loop (i = 0), how many hits are there?

Q5.4 (1.5 points) Which of the following iterations would have the same number of hits as the first
iteration of the for loop (i = 0)?

i = 3

i = 4

i = 5

i = 6

i = 7

i = 21

i = 22

i = 23

None of the above

Q5.5 (1 point) For the second iteration of the for loop (i = 1), how many hits are there?

Q5.6 (1.5 points) Which of the following iterations would have the same number of hits as the second
iteration of the for loop (i = 1)?

i = 3

i = 4

i = 5

i = 6

i = 7

i = 21

i = 22

i = 23

None of the above

Q5.7 (2.5 points) Considering all memory accesses for this program, how many compulsory misses,
non-compulsory misses, and hits are there?

Compulsory: Non-compulsory: Hits:

Final (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 20 CS 61C – Spring 2024

(Question 5 continued…)

The program on the previous page has been copied below for your convenience:

1 #define NUM_INTS 24
2 int32_t arr[NUM_INTS + 2]; // arr is located at address 0x2000
3 for (register int32_t i = 0; i < NUM_INTS; i += 1) {
4 arr[i + 2] = arr[i + 1] + arr[i]; // arr[i + 1] is accessed before arr[i]
5 }

For Q5.8 – Q5.10, assume each subpart is independent. As a reminder, our original cache is a 32B
direct-mapped cache with 8B blocks.

Q5.8 (1 point) If we change our original cache to a 24B direct-mapped cache with 8B blocks, the hit
rate for this program...

increases. remains the same. decreases.

Q5.9 (1 point) If we change our original cache to a 32B direct-mapped cache with 16B blocks, the hit
rate for this program...

increases. remains the same. decreases.

Q5.10 (1 point) If we change our original cache to a 32B fully associative cache with 8B blocks and a
LRU replacement policy, the hit rate for this program...

increases. remains the same. decreases.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 20 CS 61C – Spring 2024

Q6 61Confusing (Virtual Memory) (10 points)
For Q6.1 to Q6.3, suppose we have a 4GiB virtual memory space, a 64KiB physical memory space, 128B
pages, and a 4-entry fully associative TLB with a most-recently used (MRU) replacement policy.

Q6.1 (2.5 points) Howmany bits are in the offset, virtual page number (VPN), and physical page number
(PPN)?

Offset: VPN: PPN:

Q6.2 (1.5 points) How many entries are in the page table? Write your answer as a power of 2 (e.g. 25).

Q6.3 (1.5 points) Consider the following program executed by a particular process.

1 #define NUM_INTS 256
2 int32_t arr[NUM_INTS];
3 arr[0] = 0;
4 for (register int32_t i = 16; i < NUM_INTS; i += 16) {
5 arr[i] = i;
6 }

Suppose the address of arr is 0x1000 0000 and the execution of line 3 results in a TLB hit. When
executing the for loop, what is the minimum number of TLB hits that may occur?

Final (Question 6 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 20 CS 61C – Spring 2024

(Question 6 continued…)

For Q6.4 – Q6.6, suppose we have a system as follows:
– 32-bit virtual addresses and 16-bit physical addresses
– 8-bit offsets
– One free physical page with PPN 0x49
– 4-entry fully associative TLB

The current state of the TLB and first 5 entries of the page table are shown below.

TLB
Valid VPN PPN
1 0x00 0005 0x12
0 0x00 0001 0x18
1 0x00 0002 0x45
1 0x00 0003 0x78

Page table
(first 5 entries)

PTE
0xB256 0670
0xC490 8924
0x9845 6745
0xA158 9078
0x7256 0645

...

Each page table entry (PTE) is 4 bytes:
31 30 7 0
Valid Other status bits PPN

For each of the following virtual addresses, translate it into its corresponding physical address and
determine what will happen during address translation. Assume each access occurs independently (not
sequentially).

Q6.4 (1.5 points) 0x0000 01C9

0x

TLB hit

TLB miss and page table hit

Page fault

Q6.5 (1.5 points) 0x0000 0340

0x

TLB hit

TLB miss and page table hit

Page fault

Q6.6 (1.5 points) 0x0000 0424

0x

TLB hit

TLB miss and page table hit

Page fault

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 20 CS 61C – Spring 2024

Q7 61Calculating 𝜋 (OpenMP) (9 points)
To estimate the value of 𝜋 in C, we can generate random points within a unit square [0, 1] × [0, 1],
count how many are within the unit circle, and use the following equation:

𝜋 ≈ 4 × Points in Circle
Total Points

A working implementation of estimate_pi that uses exactly tot_points points to estimate 𝜋 is
shown below. You may assume that random_01 is a function that returns a number uniformly at
random from the range [0, 1) and can be called by multiple threads without changing its behavior. Note
that a commented out OpenMP directive does nothing.

1 double estimate_pi(int tot_points) {
2 int points_inside = 0;
3 // #pragma omp parallel
4 {
5 // #pragma omp parallel for
6 for (int i = 0; i < tot_points; i++) {
7 double x = random_01();
8 double y = random_01();
9 if (x * x + y * y <= 1) { // Check if point is inside

10 // #pragma omp critical
11 points_inside++;
12 }
13 }
14 }
15 return 4 * ((double) points_inside / (double) tot_points);
16 }

For Q7.1 – Q7.4, select the below behavior that best describes the new behavior of the code if we
include OpenMP directives by uncommenting the specified line(s). Each subpart is independent.

Behavior A: Incorrectly estimates 𝜋, or does not generate tot_points points.
Behavior B: Correctly estimates 𝜋 using tot_points points faster than the original implementation.
Behavior C: Correctly estimates 𝜋 using tot_points points slower than the original implementation.

Q7.1 (1 point) Uncomment line 3.

Behavior A Behavior B Behavior C

Q7.2 (1 point) Uncomment line 5.

Behavior A Behavior B Behavior C

Q7.3 (1 point) Uncomment line 3 and line 10.

Behavior A Behavior B Behavior C

Q7.4 (1 point) Uncomment line 5 and line 10.

Behavior A Behavior B Behavior C

Final (Question 7 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 20 CS 61C – Spring 2024

(Question 7 continued…)

Implement the function estimate_pi_fixed such that it correctly estimates𝜋 using exactly tot_points
points, and is faster than the original estimate_pi above (i.e. without any lines commented out). If
you do not need a blank, then leave it empty.

1 double estimate_pi_fixed(int tot_points) {
2 int points_inside = 0;
3 #pragma omp parallel
4 {
5 int local_points = 0;
6 int thread_num = omp_get_thread_num();
7 int num_threads = omp_get_num_threads();

8 for (int i =
Q7.5

;

9 i <
Q7.6

;

10 i +=
Q7.7

) {

11 double x = random_01();
12 double y = random_01();
13 if (x * x + y * y <= 1) {

14
Q7.8

15
Q7.9

16 }
17 }

18
Q7.10

19
Q7.11

20 }
21 return 4 * ((double) points_inside / (double) tot_points);
22 }

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 20 CS 61C – Spring 2024

Q8 61Cool C Question (SIMD) (8 points)
Implement abs_sum, a function that takes in a large array of integers arr of length arr_size and
calculates the sum of the absolute values of each element.
For example, the abs_sum of the array [1, -2, -3, 4, 5, -6, 7, -8, 9] is 45.
For full credit, your implementation must run as fast as possible. You may assume abs is a function
that correctly returns the absolute value of the argument.

– vector vec_load(uint32_t *A): Loads 4 integers from memory address A into a vector
– vector vec_store(vector *mem_addr, vector A): Stores vector A to mem_addr
– vector vec_setnum(uint32_t num): Returns a vector where every element is equal to num
– vector vec_and(vector A, vector B): Computes the bitwise AND between each pair of

corresponding vector elements in A and B, and returns a new vector with the result
– vector vec_or(vector A, vector B): Computes the bitwise OR between each pair of corre-

sponding vector elements in A and B, and returns a new vector with the result
– vector vec_xor(vector A, vector B): Computes the bitwise XOR between each pair of

corresponding vector elements in A and B, and returns a new vector with the result
– vector vec_sra(vector A, vector count): Shifts each pair of corresponding vector ele-

ments in A to the right by count with sign extension, and returns a new vector with the result
– vector vec_add(vector A, vector B): Adds A and B together elementwise, and returns a

new vector with the result
– vector vec_sub(vector A, vector B): Subtracts B from A elementwise, and returns a new

vector with the result

1 int abs_sum(const int *arr, int arr_size) {
2 vector sum = vec_setnum(0);

3 vector shift = vec_setnum(
Q8.1

);

4 for (int i = 0; i <
Q8.2

;
Q8.3

) {

5 vector vec = vec_load((vector *)(arr + i));
6 vector mask = vec_sra(vec, shift);
7 vec = vec_xor(vec, mask);

8 vec =
Q8.4

(vec, mask);

9 sum =
Q8.5

(sum, vec);

10 }
11 int result[4];

12
Q8.6

((vector *)result, sum);

13 for (int i = /* Blank Q8.2 */; i < arr_size; i += 1) {
14 result[0] += abs(arr[i]);
15 }
16 return result[0] + result[1] + result[2] + result[3];
17 }

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 20 CS 61C – Spring 2024

Q9 61Core of the Multi Variety Matrix Multiplication (PLP) (13 points)
Note: This question was inspired by the game TIS-100, written by Zach Barth.

Multiprocess programming is great, but communication is so expensive... Taking inspiration from
neural networks, we create new micro-CPUs, which work as follows:

– They have a reduced instruction set of RISC-V, where there are no load or store instructions.
Assume DMEM does not exist in our micro-CPUs because data memory accesses are “too slow”.

– They also have built-in communication systems to “connect” (i.e. wire) each micro-CPU to up to
four other micro-CPUs:
– For each of the four directions (up, down, left, and right), at most one micro-CPU is

connected.
– All micro-CPUs share a clock but have separate IMEMs, PCs, and RegFiles.
– To communicate, two additional 32-bit RISC-V instructions are added:

– send rs1 direction starts a “send operation” to the micro-CPU in the specified di-
rection. This operation will stall until the destination micro-CPU runs a corresponding
recv. Once both sender and receiver are ready, sends the value in rs1 to the receiver.

– recv rd direction starts a “receive operation” from the micro-CPU in the specified
direction. This operation will stall until the source micro-CPU runs a corresponding
send. Once both sender and receiver are ready, saves the received value in rd.

Warmup: Suppose we connect two micro-CPUs that run programs A and B as follows:

Micro-CPU Layout

A B

– In the layout above, each cell represents one micro-CPU, and adjacent cells represent a connection.
For example, the micro-CPU labeled A has right connected to the micro-CPU labeled B and left,
up, and down connected to nothing.

– The label on each micro-CPU represents the program it will execute. For example, the micro-CPU
labeled A will execute the program named A.

We would like to pass the value stored in the left micro-CPU’s a0 register to the right micro-CPU’s
a0 register. If the value in a0 of the left CPU is 10, then the following pair of diagrams shows each
micro-CPU’s a0 registers before and after running their respective programs. A value of ? indicates
that it can be any value.

a0 Before Program Execution
10 ?

a0 After Program Execution
? 10

Implement programs A and B such that the micro-CPUs match the expected behavior described
above. After each program is done, it should jump (or branch) to the label exit.

A:
send a0

Q9.1
j exit

B:
recv a0

Q9.2
j exit

Final (Question 9 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 17 of 20 CS 61C – Spring 2024

(Question 9 continued…)

We now decide to implement parallel matrix multiplication by running seven programs, A through G,
on micro-CPUs as follows:

– Input in a0 of the micro-CPUs
– Micro-CPUs labeled B contain elements of the

matrix W.
– Micro-CPUs labeled D contain elements of the

matrix X.
– Micro-CPUs labeled A and C contain the value

0.
– All other micro-CPUs may contain any value.

– Output in a0 of the micro-CPUs
– Micro-CPUs labeled E should contain elements

of the output matrix.
– All other micro-CPUs may contain any value.

Micro-CPU Layout
C ⋯ C

D ⋯ D

⋮ ⋱ ⋮

D ⋯ D

A B ⋯ B E ⋯ E F

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮

A B ⋯ B E ⋯ E F

G ⋯ G

For example, let’s consider the following matrix multiplication operation along with the corresponding
micro-CPU layout. The values in the a0 registers in each of the micro-CPUs before execution and the
expected values after execution are also shown below.

Example: Matrix Multiplication Operation

Matrix W

⎡
⎢
⎢
⎣

1 10 100
10 100 1
100 1 10
1 100 10

⎤
⎥
⎥
⎦

×

Matrix X

⎡⎢
⎣

1 5 6 7
3 9 8 3
2 5 4 8

⎤⎥
⎦

=

Output Matrix

⎡
⎢
⎢
⎣

231 595 486 837
312 955 864 378
123 559 648 783
321 955 846 387

⎤
⎥
⎥
⎦

Example: Micro-CPU Layout
C C C C

D D D D

D D D D

D D D D

A B B B E E E E F

A B B B E E E E F

A B B B E E E E F

A B B B E E E E F

G G G G

Example: a0 Before Program Execution
0 0 0 0

1 5 6 7

3 9 8 3

2 5 4 8

0 1 10 100 ? ? ? ? ?

0 10 100 1 ? ? ? ? ?

0 100 1 10 ? ? ? ? ?

0 1 100 10 ? ? ? ? ?

? ? ? ?

Example: a0 After Program Execution
? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ? 231595486 837 ?

? ? ? ? 312 955 864378 ?

? ? ? ? 123 559 648783 ?

? ? ? ? 321955 846 387 ?

? ? ? ?

Final (Question 9 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 18 of 20 CS 61C – Spring 2024

(Question 9 continued…)

Implement programs A through G such that the micro-CPUs match the expected behavior described
above and follows calling convention. After each program is done, it should jump (or branch) to the
label exit.

A:
send a0 right
j exit

B:

Q9.3

Q9.4

Q9.5
j B

C:

Q9.6
j exit

D:

Q9.7

Q9.8

Q9.9

Q9.10

E:
mv a0 x0

Loop:

Q9.11

Q9.12

Q9.13

mul
Q9.14

Q9.15

Q9.16

Q9.17
j Loop

F:

Q9.18

Q9.19

Q9.20

G:

Q9.21

Q9.22

Q9.23

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 19 of 20 CS 61C – Spring 2024

Q10 61Colorless Epilogue (0 points)
These questions will not be assigned credit; feel free to leave them blank.

Q10.1 The Coppersmith-Winograd algo-
rithm to performmatrixmultiplication
has a time complexity of 𝑂(𝑛2.3737).
What is the runtime of the matrix
multiplication performed in Q9?

bruh
Q10.2 Decorate the 61Car.

Q10.3 If there’s anything else you want us to know, or you feel like there was an ambiguity in the exam,
please put it in the box below.
For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Final

This content is protected and may not be shared, uploaded, or distributed.

Page 20 of 20 CS 61C – Spring 2024

