CS 610 Yan, Yokota
Spring 2024 Midterm

Solutions last updated: Monday, March 18th, 2024

PrINT Your Name:

PRrRINT Your Student ID:

You have 110 minutes. There are 8 questions of varying credit (100 points total).

Question: | 1 2 3] 4 5 6 | 7 | 8| Total

Points: 14 | 75| 7|20 | 235 |12 |16 | 0 | 100
For questions with circular bubbles, For questions with square checkboxes,
you may select only one choice. you may select one or more choices.
O Unselected option (completely unfilled) O You can select
@ Only one selected option (completely filled) B multiple squares
@ Don’t do this (it will be graded as incorrect) Bl (completely filled)

Anything you write outside the answer boxes or you eress-out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the worst
interpretation. For coding questions with blanks, you may write at most one statement per blank and you
may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (OxDEADBEEF instead of Oxdeadbeef).
For hex and binary, please include prefixes in your answers unless otherwise specified, and do not truncate
any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

SIGN your name:

Page 1 of 19

This content is protected and may not be shared, uploaded, or distributed.

Q1 Potpourri (14 points)
For Q1.1-Q1.2, convert the 8-bit binary 0b1100 1111 to decimal, treating it as...

Q1.1 (1 point) ...an unsigned integer.

Solution: 207

Q1.2 (1 point) ...a two’s complement integer.

Solution: -49

Q1.3 (1 point) Convert the 12-bit number 47274 to hexadecimal.

Solution: 0x9D7
004727 = 0b100 111 010 111 = 0Ob1001 1101 0111 = 0x9D7

Q1.4 (1.5 points) Suppose there are 615 students enrolled in CS61C. What is the minimum number of
bits needed to uniquely identify each student? Express your answer in decimal form.

Solution: 10 bits

To be able to represent 615, we need to be able to represent the next highest power of two,
which is 1024 = 210,

Q1.5 (1.5 points) An IEEE-754 double-precision floating point number can represent every integer that
a 32-bit two’s complement number can.

@ (A) True O (B) False

Solution: In a 32-bit two’s complement number, there are effectively 31 significand bits (bits
0 through 30 inclusive) and one sign bit (bit 31). In an IEEE-754 double-precision floating
point number, there are 52 significand bits, which means that we can represent any 32-bit
two’s complement number.

Midterm (Question 1 continues...) Page 2 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 1 continued...)

For Q1.6-Q1.7, consider a 16-bit floating point format that follows the IEEE-754 standard, with 1 sign
bit, 5 exponent bits (with a bias of -15) and 10 significand bits.

Q1.6 (1.5 points) Convert 6.25 into hexadecimal in this floating point format. If it cannot be represented,
write “None”.

Solution: 0x4640

The sign bit should be 0 as we’re working with a positive integer. Converting 6.25 into binary
gives us 0b110.01 = Ob1.1001 * 22°. This means that our exponent is 2, which would
be stored as 129 (Ob10001) due to the bias. The mantissa would start with 0b1001 and the
remaining bits would be 0s.

0x 0 10001 1001000000 = 0x4640

Q1.7 (1.5 points) What is the smallest positive value this format can support? Express your answer as
2™ where n is an integer.

Solution: 2724

The LSB of the significand represents 2710, and the exponent associated with denormalized
numbers is 2B+ = 2714 Thus, the smallest representable number is (2710) (2714) = 2724,

Q1.8 (1.5 points) All labels in an assembly file can be referenced from other assembly files.
O (A) True @ (B) False

Solution: Labels can only be referenced if there’s a . globl directive for it.

Q1.9 (1.5 points) The first step of CALL will take in a C file and turn it into an object file.

O (A) True @ (B) False

Solution: The first step of CALL is the compiler, and it compiles code from a higher-level
language into an assembly language, such as RISC-V.

Q1.10 (2 points) Convert the following RISC-V machine code into its corresponding instruction. If there
is an immediate value, express it in decimal form. Provide the appropriate register names, not
numbers, where necessary (i.e.: s5 instead of x21).

0x0655 OF63

Solution: beq a0 t0 126

Midterm Page 3 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q2 C-narios (7.5 points)
Each of the following scenarios represents a bug in a program. For each of the scenarios, please indicate
whether the bug is caused by an arithmetic overflow, precision loss, or another reason.

If you choose “Arithmetic Overflow” or “Precision Loss”, please indicate the exact C type of the
variable(s) that are involved from the following list of types:
int8_t, uint8_t, int32_t, uint32_t, float, double.

If you choose “Other”, describe the likely bug using at most 5 words; no complete sentences needed.

2.1 (1.5 points) Completing level 255 in a game resets you to level 0.
p p g g y
@ (A) Arithmetic Overflow O (B) Precision Loss O (C) Other

Solution: This is most likely an overflow of a uint8_t, as they have a range of 0 to 255.
Many classic arcade games have bugs of this nature, such as Tetris, Pac-Man, and Pokemon
Red.

Q2.2 (1.5 points) A rectangular platform that is designed to move in a sinusoid up-and-down pattern in
a game slowly drifts upwards over the course of several days.
QO (A) Arithmetic Overflow @ (B) Precision Loss QO (C) Other

Solution: In any floating point computation, the value of the float needs to be rounded to
the nearest representable float after each computation; this introduces some rounding error at
each time tick. If rounding behavior consistently favors one direction (e.g. rounding towards
zero always), then a function that is meant to be a stable sinusoid will steadily drift in one
direction due to precision loss. Each calculation can have a relative error at most the smallest
distance between representable numbers in the floating point scheme; for floats, this is 1/223
so we would expect floating point error to become significant after a few million cycles of the
sinusoid; taking into account the fact that we likely don’t get the maximum error each cycle,
this can reasonably take several days. For doubles, the relative error is bounded by 1,/252
instead, which would require at least several quadrillion calculations. Even if the platform
was moving up and down 1000 times a second, it would take around 30 years of operation
before the error becomes noticeable. Thus it is unlikely that precision loss on a double alone
would cause this error.

5

This particular bug exists in certain versions of Super Mario 64, and is caused specifically by
doubles being converted to floats (and getting rounded to 0) repeatedly. Notably, this bug
allows for the entire game to be completed without a single A button press.

Midterm (Question 2 continues...) Page 4 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 2 continued...)

Q2.3 (1.5 points) A game’s score counter behaves unexpectedly when the score exceeds ~ 103,

@ (A) Arithmetic Overflow () (B) Precision Loss O (C) Other

Solution: Since the bug occurs when a sufficiently large number is hit, this is likely an
overflow error. However, most integer formats overflow far earlier than 103%%; a 32-bit
unsigned integer maxes out at 232 ~ 4 billion. We thus note that the overflow must occur on a
floating point format. For floats, overflow should occur at the maximum possible exponent of
approximately 2'27, while for doubles, the overflow should occur at the maximum exponent of
21023 Noting that 2!° ~ 103, we should expect a f1oat overflow around 1038, and a double
overflow around 10%°7. Thus, this is likely a double overflow.

This occurs in many incremental/idle games, as their scoring system tends to reach these
ludicrously high values.

Q2.4 (1.5 points) When a program outputs a string, it infrequently prints seemingly random, corrupted

characters after the expected string.
O (A) Arithmetic Overflow (Q (B) Precision Loss @ (C) Other

Solution: This is most likely due to failing to properly null-terminate a string. If a string is
not properly null-terminated, any print call will continue to read data as if it was string data
until seeing a null terminator. However, 0 bytes are far more common than nonzero bytes, so
in most cases, the next byte happens to be by chance a null terminator, masking this bug.

This is also a common symptom of a potential security vulnerability, since if a program can

print random data as if it was a string, then that data can be disclosed to a user even if that
data should not have been disclosed. See CS 161 for more details!

Q2.5 (1.5 points) After leaving a program open for several days, the program and all other programs

Midterm

running concurrently on your computer start to slow down.
O (A) Arithmetic Overflow O (B) Precision Loss @ (C) Other

Solution: The most likely cause of this is due to excessive resource usage by the program,
causing it and all other programs using that resource to slow down. Since this develops
gradually over time, it is likely that this resource gets steadily more used as time passes. Given
this, the most likely root cause is a memory leak, as most other computer resources generally
don’t steadily increase in use, and a memory leak would cause the program to increase its
memory use over time.

Try as we might to avoid this bug, memory leaks often occur even in production code. In

general, this type of bug is why it is sometimes recommended to try and restart things if they
start getting slow.

Page 5 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q3 void *cfo (7 points)
C’s standard library has a built-in gsort function that implements the quicksort sorting algorithm.
Here is an excerpt from its man pages.

void gsort(void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

DESCRIPTION
The gsort() function sorts an array with nmemb elements of size size.
The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to
a comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to,

or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. If two
members compare as equal, their order in the sorted array is undefined.

Implement the sort_matrices function, which sorts a 1ist of matrix structs of length 1ist_len by
their size in ascending order using the gsort function. You’ll need to implement your own comparison
function compare_matrices to do this. Assume appropriate C standard libraries are already imported.

1 typedef struct {
2 int **data;

3 size_t size;

4 } matrix;
5
6

int compare_matrices (const void *p, const void *q) {

7 return ((matrix#*) p)->size - ((matrixx) q)->size;
Q3.1

10 void sort_matrices (matrix *list, size_t list_len) {

11 gsort(list, list_len,

Q3.2 Q3.3
12 sizeof (matrix), compare_matrices);
3.4 3.5
13 %}
Midterm Page 6 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q4 Fcviswu (20 points)
Implement magnitude, a RISC-V function, as follows:

— Input a0: a nonzero unsigned integer
- Returns in a0: the index of the most significant bit that is 1 in the binary representation of a0.
The least significant bit is at index 0.

For example, magnitude of 2 (Ob10) returns 1, and magnitude of 727 (Ob10 1101 0111) returns 9.

Ensure that your implementation follows calling convention.

1 magnitude:

2 1i t0 O
3 1i t1 1
4 loop:
5 beq t1 a0 end
6 addi t0 t0 1
Q4.1
7 srli a0 a0 1
Q4.2
8 j loop
9 end:
10 mv a0 t0
Q4.3
11 jr ra

Solution: If our input is 1, then we immediately break to end, as we have 0 in t0 already, and the
value returned should be 0. Otherwise, we increment a counter in t0 and shift a0 right by one.
Finally, we move our counter into a0 to return it.

Note: srai does not work in this question as we will never reach a0 == 1 if the MSB of the
argument is 1.

Midterm (Question 4 continues...) Page 7 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

Implement convert, a RISC-V function, as follows:

« Input a0: a nonzero unsigned integer
+ Returns in a0: the IEEE-754 single-precision floating point representation of a0, rounded down
if there is no exact representation.

For example, the integer 2 (0x00000002) should be converted to its corresponding floating point
representation 0x40000000. The integer 268435471 (0x1000000F) has no exact floating point repre-
sentation; instead, the representation 0x4d800000 (rounded towards zero) should be returned.

You may assume that magnitude is implemented correctly and behaves as specified in the first part, re-
gardless of your implementation above. You may not assume any specific implementation of magnitude,
and you may not modify any s registers except for s4.

1 convert:

2 # prologue omitted

3 mv s4 a0

4 jal ra magnitude

5 addi t1 x0 32 # set significand

6 sub t1 t1 a0
Q4.4

7 sll s4 s4 t1
Q4.5

8 srli s4 s4 9
Q4.6

9 addi a0 a0 127 # set exponent

Q4.7
10 slli a0 a0 23
Q4.8

11 add a0 a0 s4
Q4.9

12 # epilogue omitted

13 jr ra

Midterm (Question 4 continues...) Page 8 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 4 continued...)

Solution: When we initialize t1 to 32 and subtract the magnitude, we get the number of bits
before (and including) the first 1 bit. Shifting left by this amount aligns the first bit of the would-be
significand all the way to the left, while removing the implicit 1, then we shift right by 9 into
position. The return value of the magnitude function is also the exponent we need to multiply by;
we add the bias 127 then shift left by 23 to place it properly. Finally, we combine the values.

1564 = 0b0110 0001 1100
10, and 32 - 10 = 22. The shifts produce values that look like this:

For example: 0x61C
magnitude (0x61C)

original: 0Ob0000 0000 0000 0000 0000 0110 0001 1100
left shift 22: 0b1000 0111 0000 0000 0000 0000 0000 0000
right shift 9: 0b0000 0000 0100 0011 1000 0000 0000 0000

Adding the bias to the exponent/magnitude gives 127 + 10 = 137 = 0b1000 1001. Shifting
left by 23 and adding the significand gives:

exponent: 0b0100 0100 1000 0000 0000 0000 0000 0000
+ significand: 0b0000 0000 0100 0011 1000 0000 0000 0000
= 0b0100 0100 1100 0011 1000 0000 0000 0000

which is precisely the float representation of 1564.

Q4.10 (2.5 points) Which registers need to be saved in the prologue and restored in the epilogue for
convert to satisfy calling convention?

H (A)s4 O (C) a0 O (E) None
B B)ra O (D) t1

Solution: s4 and ra. ra is needed since we call the function magnitude.

Midterm Page 9 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q5 Pets

The Pets struct is defined as follows:

(23.5 points)

typedef struct {
uint32_t count; // The number of pets in this struct
char **names; // An ordered list of each pet's name
} Pets;

The function void add_pet(Pets *p, char *name) is defined as follows:

— Pets *p: A valid pointer to a Pets struct.
- char #*name: The pet’s name as a properly null-terminated string.

You may assume the following:

- For any Pets struct, count is initialized to 0 and names is initialized to NULL.
— Dynamic memory allocation will never fail.
— All relevant standard libraries have been imported.

Below is an example of the behavior of add_pet:

1 int num_cats = 3;
2 int main () {
3 Pets dogs = {0, NULL};

4 char dog[] = "Harold";
5 add_pet(&dogs, dog);

6 dogl0]l = 'D';

7 dogli] = 'a';

8 dogl2] = 'v';

9 dogl3] = 'e';

10 dogl4] = '\0';

11 add_pet(&dogs, dog);

12 printf("%d\n", dogs.count); // output is 2

13 printf("%s\n", (dogs.names)[0]); // output is Harold
14 printf("%s\n", (dogs.names)[1]); // output is Dave
15 return O;

16 }

Useful C stdlib function prototypes:

void *malloc(size_t size);

void free(void #*ptr);

void *calloc(size_t num_elements, size_t size);
void *realloc(void *ptr, size_t size);

size_t strlen(char *s);
char *strcpy(char *dest, char *src);

Midterm (Question 5 continues...) Page 10 of 19

This content is protected and may not be shared, uploaded, or distributed.

CS 61C — Spring 2024

(Question 5 continued...)

Implement add_pet to match the described behavior above. Note: realloc (NULL, n) is equivalent
tomalloc(n).

1 void add_pet(Pets #*p, char *name) {

2 int name_len = strlen(name);
Q5.1

3 p->names = realloc(p->names, (p->count + 1) * sizeof(charx));
Q5.2

4 char *name_copy = malloc(name_len + 1);
Q5.3

5 strcpy(name_copy, name);
Q5.4 Q5.5

6 *(p->names + p->count) = name_copy;
Q5.6 Q5.7
7 p->count = p->count + 1;

Solution: We need to reallocate memory for the list, p->names to add another name, copy *name
into a new memory location and update the list count to implement add_pets.

For each of the following symbols from the example, choose which section of memory it would live in.
Q5.8 (1.5 points) num_cats (defined on line 1)

O (A) Code @ (B) Static O (C) Stack O (D) Heap

Solution: num_cats is in static memory because it’s a variable defined outside of a function.

Q5.9 (1.5 points) add_pet

@ (A) Code O (B) Static O (C) Stack O (D) Heap

Solution: add_pet is in code since it’s a function.

Midterm (Question 5 continues...) Page 11 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.10 (1.5 points) dogs.names

O (A) Code O (B) Static @ (C) Stack O (D) Heap

Solution: dogs.names is on the stack since dogs was declared on the stack, and names is a
member in the Pets struct.

Q5.11 (1.5 points) (dogs.names) [1]

O (A) Code O (B) Static O (C) Stack @ (D) Heap

Solution: dogs.names[1] is on the heap as add_pet should make a copy of the name passed
in on the heap and add it to the names list in the Pets struct.

For Q5.12-Q5.14, assume we have a big-endian system, and the code below has been run.

char course[] = {'6', '1', 'c'};
uint64_t *q = (uint64_t *) course;
uint32_t *p = (uint32_t *) q;

course is located at address 0x1000 0000. Memory starting at 0x1000 0000 is shown below:

0x36 | 0x31 | 0x63 | 0x69 | 0x73 | 0x63 | Ox6F | Ox6F | 0x6C | 0x00 | 0x63

A A A

0x1000 0000 0x1000 0004 0x1000 0008
Q5.12 (1.5 points) What is the value of strlen(course)?
O @s O () 11
O B)4 O ()12
® ©O9 O (G) None of the above
O (D) 10 O (H) Compiler/runtime error

Solution: strlen reads memory one byte at a time until it hits a null terminator (0x00). In
this case, there are 9 bytes (from address 0x1000 0000 in memory) before 0x00 is reached at
address 0x1000 0009.

Midterm (Question 5 continues...) Page 12 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 5 continued...)

Q5.13 (1.5 points) What is the value of *q?

O (A) 0x3613 3696 3736 F6F6 O (D) 0x6F6F 6373 6963 3136
@ (B) 0x3631 6369 7363 6F6F QO (E) 0x7363 6F6F 3631 6369
QO (C) 0x6963 3136 6F6F 6373 O (F) None of the above

Solution: Evaluate the sequence of 8 bytes stored in address 0x1000 0000 to 0x1000 0007
in big-endian.

Q5.14 (1.5 points) What is the value of p + 1?

O (A) 0x3163 6973 O (D) 0x1000 0001
O (B) Ox6F6F 6373 @ (E) 0x1000 0004
O (C) 0x7363 6F6F O (F) None of the above

Solution: p + 1 evaluates to p + sizeof(p) = 0x1000 0000 + 4 = 0x1000 0004

Midterm Page 13 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

This page intentionally left (mostly) blank.

The exam continues on the next page.

Midterm Page 14 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q6 Logical Logisim (12 points)

Q6.1 (2 points) Given the following circuit with three inputs (A, B, and C), fill in the truth table for
output D. You may ignore the Magic subcircuit and output E for Q6.1.

A B C D E
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 0 1

Q6.2 (3 points) Referencing the truth table and circuit above, write a boolean algebra expression in
terms of A, B, and C that is equivalent to the behavior of the “Magic” subcircuit (i.e. output E).
For full credit, you may use at most 2 operators. You may only use NOT (~), AND (&), OR (|), and
each count as one operator. We will assume standard C operator precedence, so use parentheses
when uncertain.

Solution: B & (C | A)

Midterm (Question 6 continues...) Page 15 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 6 continued...)

Q6.3 (3 points) Select all circuits that are logically equivalent to the following expression. If you select
“None of the above,” you cannot select other options.

E=A& B&C) | ("TA&B&C)

1 2

el

3 4
}:
B
H A1 O ®) 2 O ©)3 B D)4

QO (E) None of the above

Consider the following SDS circuit and combinational delays. The adder block has a delay of 50ps. Each
register has a clk-to-q delay of 20ps and a setup time of 30ps. You may assume registers are triggered
on the rising edge and there is only one clock signal.

Min. Delay: 100ps :
— cin
b Q Max. Delay: 600ps cok D Q
|
[[o

Min. Delay: 50ps Min. Delay: 150ps
Max. Delay: 350ps D Max. Delay: 250ps

[}

Q6.4 (2 points) What is the minimum allowable clock period?

Solution: 700 ps (fek-to-q T trop cr T Ladder T Lsetup = 20 + 600 + 50 + 30 = 700)

Q6.5 (2 points) What is the maximum hold time for our registers in order for the circuit to have well-
defined behavior?

Solution: 20 + 50 = 70 ps (ei-t0-q + Lshortest cr. = 20 + 50 > ty,514)

Midterm Page 16 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

Q7 Datapathology (16 points)
For this question, refer to the RISC-V Single Cycle Datapath from the CS 61C Reference Card.

For each of the following instructions, select the proper control signals and indicate which datapath
components are used. If you select “None,” you cannot select other options.

bgeu t4 t5 end (assume branch is taken)
Q7.1 (1 point) PCSel
O (A PC+4 @ (B) ALU O (C) Don’t Care
Q7.2 (1 point) ASel
@ APC O (B) RegReadDatal O (C) Don’t Care
Q7.3 (1 point) BSel
@ (A) Imm O (B) RegReadData2 O (C) Don’t Care
Q7.4 (1 point) WBSel
O APC+4 O (B) ALU O (C) Mem @ (D) Don’t Care
Q7.5 (1 point) Datapath Components

B (A) Branch Bl (B) Imm Gen O (C) DMEM O (D) None
Comp

auipc a0, 0x61C
Q7.6 (1 point) PCSel
@ APC+4 O (B) ALU O (C) Don’t Care
Q7.7 (1 point) ASel
@ APC O (B) RegReadDatal O (C) Don’t Care
Q7.8 (1 point) BSel
@ (A) Imm O (B) RegReadData2 O (C) Don’t Care
Q7.9 (1 point) WBSel
O APC+4 @ (B) ALU O (C) Mem QO (D) Don’t Care

Q7.10 (1 point) Datapath Components

O (A) Branch B (B) Imm Gen O (C) DMEM O (D) None
Comp
Midterm (Question 7 continues...) Page 17 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

(Question 7 continued...)

Oh no! Jedi dropped your CPU and some of your datapath components are broken. You need to figure
out which types of instructions are still guaranteed to function as expected. You may ignore ebreak

and ecall. If you select “None,” you cannot select other options.

Example: You should only select “I-type” if all I-type instructions are guaranteed to function as
expected.

Q7.11 (2 points) PCSel is always “ALU”

O (A) R-Type O (E) U-Type
O (B) I-Type

W (F) J-Type
O (C) S-Type
O (D) B-Type O (G) None
Solution: J-Type instructions always jump.

Q7.12 (2 points) ASel is always “PC”

O (A) R-Type B (E) U-Type
O (B) I-Type

W (F) J-Type
O (C) S-Type
B (D) B-Type O (G) None

Q7.13 (2 points) ImmGen always outputs 0x00000000

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Solution: B-Type and J-Type instructions all use the PC register to calculate the target PC
address. AUIPC uses the PC register. LUI doesn’t need the PC register, but still functions

properly.

B (A) R-Type
O (B) I-Type
O (C) S-Type
O (D) B-Type

O (E) U-Type
O (F) J-Type

O (G) None

Solution: R-Type instructions don’t use ImmGen

Page 18 of 19

CS 61C - Spring 2024

Q8 Coloring Book (0 points)
These questions will not be assigned credit; feel free to leave them blank.

08.1

Q8.2

08.3

Q8.4

Midterm

(0 points) What does the FCVT.S.WU instruction stand for?

Solution: Floating-Point Convert to Single-Precision from Unsigned Word. This is the RISC-V
floating-point extension’s name for the operation that convert in question 4 implements!

(0 points) What does the CVTSI2SS instruction stand for?

Solution: Convert Doubleword Integer to Scalar Single Precision Floating-Point Value. This
is the equivalent instruction in x86 assembly.

(0 points) Which lecture contains a hidden animal and what was its species?

Solution: Lecture 18, an adder is in a skipped slide.

(0 points) If there’s anything else you want us to know, or you feel like there was an ambiguity in
the exam, please put it in the box below.

For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Solution: _(V)_/~

Page 19 of 19 CS 61C - Spring 2024

This content is protected and may not be shared, uploaded, or distributed.

