
CS 61C
Spring 2024

Yan, Yokota
Midterm

Print Your Name:

Print Your Student ID:

You have 110 minutes. There are 8 questions of varying credit (100 points total).

Question: 1 2 3 4 5 6 7 8 Total

Points: 14 7.5 7 20 23.5 12 16 0 100

For questions with circular bubbles,
you may select only one choice.

Unselected option (completely unfilled)

Only one selected option (completely filled)

Don’t do this (it will be graded as incorrect)

For questions with square checkboxes,
you may select one or more choices.

You can select

multiple squares

(completely filled)

Anything you write outside the answer boxes or you cross out will not be graded. If you write multiple
answers, your answer is ambiguous, or the bubble/checkbox is not entirely filled in, we will grade the worst
interpretation. For coding questions with blanks, you may write at most one statement per blank and you
may not use more blanks than provided.

If an answer requires hex input, you must only use capitalized letters (0xDEADBEEF instead of 0xdeadbeef).
For hex and binary, please include prefixes in your answers unless otherwise specified, and do not truncate
any leading 0’s. For all other bases, do not add any prefixes or suffixes.

Write the statement below in the same handwriting you will use on the rest of the exam.

I have neither given nor received help on this exam (or quiz), and have rejected any attempt to cheat;
if these answers are not my own work, I may be deducted up to 0x0123 4567 89AB CDEF points.

Sign your name:

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 16

Q1 Potpourri (14 points)

For Q1.1-Q1.2, convert the 8-bit binary 0b1100 1111 to decimal, treating it as...

Q1.1 (1 point) ...an unsigned integer.

Q1.2 (1 point) ...a two’s complement integer.

Q1.3 (1 point) Convert the 12-bit number 47278 to hexadecimal.

0x

Q1.4 (1.5 points) Suppose there are 615 students enrolled in CS61C. What is the minimum number of
bits needed to uniquely identify each student? Express your answer in decimal form.

bits

Q1.5 (1.5 points) An IEEE-754 double-precision floating point number can represent every integer that
a 32-bit two’s complement number can.

True False

For Q1.6-Q1.7, consider a 16-bit floating point format that follows the IEEE-754 standard, with 1 sign
bit, 5 exponent bits (with a bias of -15) and 10 significand bits.

Q1.6 (1.5 points) Convert 6.25 into hexadecimal in this floating point format. If it cannot be represented,
write “None”.

0x

Q1.7 (1.5 points) What is the smallest positive value this format can support? Express your answer as
2𝑛 where 𝑛 is an integer.

Midterm (Question 1 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 16 CS 61C – Spring 2024

(Question 1 continued…)

Q1.8 (1.5 points) All labels in an assembly file can be referenced from other assembly files.

True False

Q1.9 (1.5 points) The first step of CALL will take in a C file and turn it into an object file.

True False

Q1.10 (2 points) Convert the following RISC-V machine code into its corresponding instruction. If there
is an immediate value, express it in decimal form. Provide the appropriate register names, not
numbers, where necessary (i.e.: s5 instead of x21).

0x0655 0F63

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 16 CS 61C – Spring 2024

Q2 C-narios (7.5 points)
Each of the following scenarios represents a bug in a program. For each of the scenarios, please indicate
whether the bug is caused by an arithmetic overflow, precision loss, or another reason.

If you choose “Arithmetic Overflow” or “Precision Loss”, please indicate the exact C type of the
variable(s) that are involved from the following list of types:
int8_t, uint8_t, int32_t, uint32_t, float, double.

If you choose “Other”, describe the likely bug using at most 5 words; no complete sentences needed.

Q2.1 (1.5 points) Completing level 255 in a game resets you to level 0.
Arithmetic Overflow Precision Loss Other

Q2.2 (1.5 points) A rectangular platform that is designed to move in a sinusoid up-and-down pattern in
a game slowly drifts upwards over the course of several days.

Arithmetic Overflow Precision Loss Other

Q2.3 (1.5 points) A game’s score counter behaves unexpectedly when the score exceeds ≈ 10308.
Arithmetic Overflow Precision Loss Other

Q2.4 (1.5 points) When a program outputs a string, it infrequently prints seemingly random, corrupted
characters after the expected string.

Arithmetic Overflow Precision Loss Other

Q2.5 (1.5 points) After leaving a program open for several days, the program and all other programs
running concurrently on your computer start to slow down.

Arithmetic Overflow Precision Loss Other

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 16 CS 61C – Spring 2024

Q3 void *cf0 (7 points)
C’s standard library has a built-in qsort function that implements the quicksort sorting algorithm.
Here is an excerpt from its man pages.

void qsort(void *base, size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

DESCRIPTION
The qsort() function sorts an array with nmemb elements of size size.
The base argument points to the start of the array.

The contents of the array are sorted in ascending order according to
a comparison function pointed to by compar, which is called with two
arguments that point to the objects being compared.

The comparison function must return an integer less than, equal to,
or greater than zero if the first argument is considered to be
respectively less than, equal to, or greater than the second. If two
members compare as equal, their order in the sorted array is undefined.

Implement the sort_matrices function, which sorts a list of matrix structs of length list_len by
their size in ascending order using the qsort function. You’ll need to implement your own comparison
function compare_matrices to do this. Assume appropriate C standard libraries are already imported.

1 typedef struct {
2 int **data;
3 size_t size;
4 } matrix;
5
6 int compare_matrices (const void *p, const void *q) {

7 return
Q3.1

;

8 }
9

10 void sort_matrices (matrix *list, size_t list_len) {

11 qsort(
Q3.2

,
Q3.3

,

12
Q3.4

,
Q3.5

);

13 }

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 16 CS 61C – Spring 2024

Q4 FCVT.S.WU (20 points)
Implement magnitude, a RISC-V function, as follows:

– Input a0: a nonzero unsigned integer
– Returns in a0: the index of the most significant bit that is 1 in the binary representation of a0.

The least significant bit is at index 0.

For example, magnitude of 2 (0b10) returns 1, and magnitude of 727 (0b10 1101 0111) returns 9.

Ensure that your implementation follows calling convention.

1 magnitude:
2 li t0 0
3 li t1 1
4 loop:
5 beq t1 a0 end

6
Q4.1

7
Q4.2

8 j loop
9 end:

10
Q4.3

11 jr ra

Midterm (Question 4 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 16 CS 61C – Spring 2024

(Question 4 continued…)

Implement convert, a RISC-V function, as follows:

• Input a0: a nonzero unsigned integer
• Returns in a0: the IEEE-754 single-precision floating point representation of a0, rounded down
if there is no exact representation.

For example, the integer 2 (0x00000002) should be converted to its corresponding floating point
representation 0x40000000. The integer 268435471 (0x1000000F) has no exact floating point repre-
sentation; instead, the representation 0x4d800000 (rounded towards zero) should be returned.

You may assume that magnitude is implemented correctly and behaves as specified in the first part, re-
gardless of your implementation above. Youmay not assume any specific implementation of magnitude,
and you may not modify any s registers except for s4.

1 convert:
2 # prologue omitted

3 mv s4 a0
4 jal ra magnitude

5 addi t1 x0 32 # set significand

6
Q4.4

7
Q4.5

8
Q4.6

9 addi a0 a0
Q4.7

set exponent

10 slli a0 a0
Q4.8

11
Q4.9

12 # epilogue omitted
13 jr ra

Q4.10 (2.5 points) Which registers need to be saved in the prologue and restored in the epilogue for
convert to satisfy calling convention?

s4

ra

a0

t1

None

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 16 CS 61C – Spring 2024

Q5 Pets (23.5 points)
The Pets struct is defined as follows:

typedef struct {
uint32_t count; // The number of pets in this struct
char **names; // An ordered list of each pet's name

} Pets;

The function void add_pet(Pets *p, char *name) is defined as follows:

– Pets *p: A valid pointer to a Pets struct.
– char *name: The pet’s name as a properly null-terminated string.

You may assume the following:

– For any Pets struct, count is initialized to 0 and names is initialized to NULL.
– Dynamic memory allocation will never fail.
– All relevant standard libraries have been imported.

Below is an example of the behavior of add_pet:

1 int num_cats = 3;
2 int main () {
3 Pets dogs = {0, NULL};
4 char dog[] = "Harold";
5 add_pet(&dogs, dog);
6 dog[0] = 'D';
7 dog[1] = 'a';
8 dog[2] = 'v';
9 dog[3] = 'e';

10 dog[4] = '\0';
11 add_pet(&dogs, dog);
12 printf("%d\n", dogs.count); // output is 2
13 printf("%s\n", (dogs.names)[0]); // output is Harold
14 printf("%s\n", (dogs.names)[1]); // output is Dave
15 return 0;
16 }

Useful C stdlib function prototypes:

void *malloc(size_t size);
void free(void *ptr);
void *calloc(size_t num_elements, size_t size);
void *realloc(void *ptr, size_t size);

size_t strlen(char *s);
char *strcpy(char *dest, char *src);

Midterm (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 16 CS 61C – Spring 2024

(Question 5 continued…)

Implement add_pet to match the described behavior above. Note: realloc(NULL, n) is equivalent
to malloc(n).

1 void add_pet(Pets *p, char *name) {

2 int name_len = strlen(
Q5.1

);

3 p->names =
Q5.2

;

4 char *name_copy =
Q5.3

;

5 strcpy(
Q5.4

,
Q5.5

);

6 *(
Q5.6

) =
Q5.7

;

7 p->count = p->count + 1;
8 }

For each of the following symbols from the example, choose which section of memory it would live in.

Q5.8 (1.5 points) num_cats (defined on line 1)

Code Static Stack Heap

Q5.9 (1.5 points) add_pet

Code Static Stack Heap

Q5.10 (1.5 points) dogs.names

Code Static Stack Heap

Q5.11 (1.5 points) (dogs.names)[1]

Code Static Stack Heap

Midterm (Question 5 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 16 CS 61C – Spring 2024

(Question 5 continued…)

For Q5.12-Q5.14, assume we have a big-endian system, and the code below has been run.

char course[] = {'6', '1', 'c'};
uint64_t *q = (uint64_t *) course;
uint32_t *p = (uint32_t *) q;

course is located at address 0x1000 0000. Memory starting at 0x1000 0000 is shown below:

0x36 0x31 0x63 0x69 0x73 0x63 0x6F 0x6F 0x6C 0x00 0x63 ...

0x1000 0000 0x1000 0004 0x1000 0008
Q5.12 (1.5 points) What is the value of strlen(course)?

3

4

9

10

11

12

None of the above

Compiler/runtime error

Q5.13 (1.5 points) What is the value of *q?

0x3613 3696 3736 F6F6

0x3631 6369 7363 6F6F

0x6963 3136 6F6F 6373

0x6F6F 6373 6963 3136

0x7363 6F6F 3631 6369

None of the above

Q5.14 (1.5 points) What is the value of p + 1?

0x3163 6973

0x6F6F 6373

0x7363 6F6F

0x1000 0001

0x1000 0004

None of the above

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 10 of 16 CS 61C – Spring 2024

This page intentionally left (mostly) blank.

The exam continues on the next page.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 11 of 16 CS 61C – Spring 2024

Q6 Logical Logisim (12 points)

Q6.1 (2 points) Given the following circuit with three inputs (A, B, and C), fill in the truth table for
output D. You may ignore the Magic subcircuit and output E for Q6.1.

A B C D E

0 0 0 0 0

0 0 1 1 0

0 1 0 0 0

0 1 1 0 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Q6.2 (3 points) Referencing the truth table and circuit above, write a boolean algebra expression in
terms of A, B, and C that is equivalent to the behavior of the “Magic” subcircuit (i.e output E).
For full credit, you may use at most 2 operators. You may only use NOT (~), AND (&), OR (|), and
each count as one operator. We will assume standard C operator precedence, so use parentheses
when uncertain.

Midterm (Question 6 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 12 of 16 CS 61C – Spring 2024

(Question 6 continued…)

Q6.3 (3 points) Select all circuits that are logically equivalent to the following expression. If you select
“None of the above,” you cannot select other options.

E = (A & ~B & C) | (~A & B & C)

1 2 3 4
None of the above

Consider the following SDS circuit and combinational delays. The adder block has a delay of 50ps. Each
register has a clk-to-q delay of 20ps and a setup time of 30ps. You may assume registers are triggered
on the rising edge and there is only one clock signal.

Q6.4 (2 points) What is the minimum allowable clock period?

ps

Q6.5 (2 points) What is the maximum hold time for our registers in order for the circuit to have well-
defined behavior?

ps

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 13 of 16 CS 61C – Spring 2024

Q7 Datapathology (16 points)
For this question, refer to the RISC-V Single Cycle Datapath from the CS 61C Reference Card.

For each of the following instructions, select the proper control signals and indicate which datapath
components are used. If you select “None,” you cannot select other options.

bgeu t4 t5 end (assume branch is taken)

Q7.1 (1 point) PCSel

PC + 4 ALU Don’t Care

Q7.2 (1 point) ASel

PC RegReadData1 Don’t Care

Q7.3 (1 point) BSel

Imm RegReadData2 Don’t Care

Q7.4 (1 point) WBSel

PC + 4 ALU Mem Don’t Care

Q7.5 (1 point) Datapath Components

Branch Comp Imm Gen DMEM None

auipc a0, 0x61C

Q7.6 (1 point) PCSel

PC + 4 ALU Don’t Care

Q7.7 (1 point) ASel

PC RegReadData1 Don’t Care

Q7.8 (1 point) BSel

Imm RegReadData2 Don’t Care

Q7.9 (1 point) WBSel

PC + 4 ALU Mem Don’t Care

Q7.10 (1 point) Datapath Components

Branch Comp Imm Gen DMEM None

Midterm (Question 7 continues…)

This content is protected and may not be shared, uploaded, or distributed.

Page 14 of 16 CS 61C – Spring 2024

(Question 7 continued…)

Oh no! Jedi dropped your CPU and some of your datapath components are broken. You need to figure
out which types of instructions are still guaranteed to function as expected. You may ignore ebreak
and ecall. If you select “None,” you cannot select other options.
Example: You should only select “I-type” if all I-type instructions are guaranteed to function as
expected.

Q7.11 (2 points) PCSel is always “ALU”

R-Type

I-Type

S-Type

B-Type

U-Type

J-Type

None

Q7.12 (2 points) ASel is always “PC”

R-Type

I-Type

S-Type

B-Type

U-Type

J-Type

None

Q7.13 (2 points) ImmGen always outputs 0x00000000

R-Type

I-Type

S-Type

B-Type

U-Type

J-Type

None

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 15 of 16 CS 61C – Spring 2024

Q8 Coloring Book (0 points)
These questions will not be assigned credit; feel free to leave them blank.

Q8.1 (0 points) What does the FCVT.S.WU instruction stand for?

Q8.2 (0 points) What does the CVTSI2SS instruction stand for?

Q8.3 (0 points) Which lecture contains a hidden animal and what was its species?

Q8.4 (0 points) If there’s anything else you want us to know, or you feel like there was an ambiguity in
the exam, please put it in the box below.
For ambiguities, you must qualify your answer and provide an answer for both interpretations.
For example, “if the question is asking about A, then my answer is X, but if the question is asking
about B, then my answer is Y”. You will only receive credit if it is a genuine ambiguity and both of
your answers are correct. We will only look at ambiguities if you request a regrade.

Midterm

This content is protected and may not be shared, uploaded, or distributed.

Page 16 of 16 CS 61C – Spring 2024

