
CS 61C RISC-V Assembly, Functions
Spring 2024 Discussion 4

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

1.2 In order to use the saved registers (s0-s11) in a function, we must store their values

before using them and restore their values before returning.

1.3 The stack should only be manipulated at the beginning and end of functions, where

the callee saved registers are temporarily saved.



2 RISC-V Assembly, Functions

2 Arrays in RISC-V
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

}

2.1 lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

2.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

2.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:



RISC-V Assembly, Functions 3

3 Memory Access
Using the given instructions and the sample memory array, what will happen when

the RISC-V code is executed? For load instructions (lw, lb, lh), write out what

each register will store. For store instructions (sw, sh, sb), update the memory

array accordingly. Recall that RISC-V is little-endian and byte addressable.

3.1 li t0 0x00FF0000

lw t1 0(t0)

addi t0 t0 4

lh t2 2(t0)

lw s0 0(t1)

lb s1 3(t2)

What value does each register hold after

the code is executed?

...

0x000C561C

36
...

0xFDFDFDFD

0xDEADB33F
...

0xC5161C00
...

0xFFFFFFFF

0x00FF0004

0x00FF0000

0x00000036

0x00000024

0x0000000C

0x00000000

3.2 li t0 0xABADCAFE

li t1 0xF9120504

li t2 0xBEEFCACE

sw t0 0(t1)

addi t1 t1 4

addi t0 t0 4

sh t1 2(t0)

sb t2 1(t2)

sb t2 3(t1)

sb t2 3(t0)

0x00000000

0xFFFFFFFF

0xF9120504

0xABADCAFE

0x00000004
0x00000000

Update the memory array with its new values after the code is executed. Some

memory addresses may not have been labeled for you yet.

4 Calling Convention Practice
4.1 In a function called myfunc, we want to call two functions called generate random

and reverse.

myfunc takes in 3 arguments: a0, a1, a2

generate random takes in no arguments and returns a random integer to a0.

reverse takes in 4 arguments: a0, a1, a2, a3 and doesn’t return anything.

1 myfunc:

2 # Prologue (omitted)



4 RISC-V Assembly, Functions

3

4 # assign registers to hold arguments to myfunc

5 addi t0 a0 0

6 addi s0 a1 0

7 addi a7 a2 0

8

9 # Save the registers in 4.2

10 jal generate_random

11 # Load the registers stored from 4.2

12

13 # store and process return value

14 addi t1 a0 0

15 slli t5 t1 2

16

17 # setup arguments for reverse

18 add a0 t0 x0

19 add a1 s0 x0

20 add a2 t5 x0

21 addi a3 t1 0

22

23 # Save the registers in 4.3

24 jal reverse

25 # Load the registers stored from 4.2

26

27 # additional computations

28 add t0 s0 x0

29 add t1 t1 a7

30 add s9 s8 s7

31 add s3 x0 t5

32

33 # Epilogue (omitted)

34 ret

4.1 Which registers, if any, need to be saved on the stack in the prologue?

4.2 Which registers do we need to save on the stack before calling generate random?

4.3 Which registers do we need to save on the stack before calling reverse?

4.4 Which registers need to be recovered in the epilogue before returning?


	Pre-Check
	Arrays in RISC-V
	Memory Access
	Calling Convention Practice

