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1 Pre-Check: Memory in C
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 If you try to dereference a variable that is not a pointer, what will happen? What

about when you free one?

It will treat that variable’s underlying bits as if they were a pointer and attempt to

access the data there. C will allow you to do almost anything you want, though if

you attempt to access an ”illegal” memory address, it will segfault for reasons we

will learn later in the course. It’s why C is not considered ”memory safe”: you can

shoot yourself in the foot if you’re not careful. If you free a variable that either has

been freed before or was not malloced/calloced/realloced, bad things happen. The

behavior is undefined and terminates execution, resulting in an ”invalid free” error.

1.2 Memory sectors are defined by the hardware, and cannot be altered.

False. The four major memory sectors, stack, heap, static/data, and text/code for

any given process (application) are defined by the operating system and may differ

depending on what kind of memory is needed for it to run.

What’s an example of a process that might need significant stack space, but very

little text, static, and heap space? (Almost any basic deep recursive scheme, since

you’re making many new function calls on top of each other without closing the

previous ones, and thus, stack frames.)

What’s an example of a text and static heavy process? (Perhaps a process that

is incredibly complicated but has efficient stack usage and does not dynamically

allocate memory.)

What’s an example of a heap-heavy process? (Maybe if you’re using a lot of dynamic

memory that the user attempts to access.)

1.3 For large recursive functions, you should store your data on the heap over the stack.

False. Generally speaking, if you need to keep access to data over several separate

function calls, use the heap. However, recursive functions call themselves, creating

multiple stack frames and using each of their return values. If you store data on the

heap in a recursive scheme, your malloc calls may lead to you rapidly running out

of memory, or can lead to memory leaks as you lose where you allocate memory as

each stack frame collapses.
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2 Memory Management
C does not automatically handle memory for you. In each program, an address

space is set aside, separated in 2 dynamically changing regions and 2 ’static’ regions.

• The Stack: local variables inside of functions, where data is garbage immedi-

ately after the function in which it was defined returns. Each function call

creates a stack frame with its own arguments and local variables. The stack

dynamically changes, growing downwards as multiple functions are called

within each other (LIFO structure), and collapsing upwards as functions finish

execution and return.

• The Heap: memory manually allocated by the programmer with malloc,

calloc, or realloc. Used for data we want to persist beyond function calls,

growing upwards to ’meet’ the stack. Careful heap management is necessary

to avoid Heisenbugs! Memory is freed only when the programmer explicitly

frees it!

• Static data: global variables declared outside of functions, does not grow or

shrink through function execution.

• Code (or Text): loaded at the start of the program and does not change after,

contains executable instructions and any pre-processor macros.

There are a number of functions in C that can be used to dynamically allocate

memory on the heap. The following are the ones we use in this class:

• malloc(size_t size) allocates a block of size bytes and returns the start of

the block. The time it takes to search for a block is generally not dependent

on size.

• calloc(size_t count, size_t size) allocates a block of count * size bytes,

sets every value in the block to zero, then returns the start of the block.

• realloc(void *ptr, size_t size) ”resizes” a previously-allocated block of

memory to size bytes, returning the start of the resized block.

• free(void *ptr) deallocates a block of memory which starts at ptr that was

previously allocated by the three previous functions.

2.1 Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

arr = (int *) malloc(sizeof(int) * k);

(b) A string str containing p characters

str = (char *) malloc(sizeof(char) * (p + 1)); Don’t forget the null ter-

minator!

(c) An n×m matrix mat of integers initialized to zero.
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mat = (int *) calloc(n * m, sizeof(int)); Alternative solution. This might

be needed if you wanted to efficiently permute the rows of the matrix.

1 mat = (int **) calloc(n, sizeof(int *));

2 for (int i = 0; i < n; i++)

3 mat[i] = (int *) calloc(m, sizeof(int));

(d) Unallocating all but the first 5 values in an integer array arr. (Assume arr has

more than 5 values)

arr = realloc(arr, 5 * sizeof(int));

2.2 Compare the following two implementations of a function which duplicates a string.

Is either one correct? Which one runs faster?

1 char* strdup1(char* s) {

2 int n = strlen(s);

3 char* new_str = malloc((n + 1) * sizeof(char));

4 for (int i = 0; i < n; i++) new_str[i] = s[i];

5 return new_str;

6 }

7 char* strdup2(char* s) {

8 int n = strlen(s);

9 char* new_str = calloc(n + 1, sizeof(char));

10 for (int i = 0; i < n; i++) new_str[i] = s[i];

11 return new_str;

12 }

The first implementation is incorrect because malloc doesn’t initialize the allocated

memory to any given value, so the new string may not be null-terminated. This

is easily fixed, however, just by setting the last character in new str to the null

terminator. The second implementation is correct since calloc will set each character

to zero, so the string is always null-terminated.

Between the two implementations, the first will run slightly faster since malloc

doesn’t need to set the memory values. calloc does set each memory location, so it

runs in O(n) time in the worst case. Effectively, we do ”extra” work in the second

implementation setting every character to zero, and then overwrite them with the

copied values afterwards.

3 Pre-Check: Floating Point
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

3.1 The idea of floating point is to use the ability to move the radix (decimal) point

wherever to represent a large range of real numbers as exact as possible.
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True. Floating point:

- Provides support for a wide range of values. (Both very small and very large)

- Helps programmers deal with errors in real arithmetic because floating point can

represent + ∞, -∞, NaN (Not a number)

- Keeps high precision. Recall that precision is a count of the number of bits in a

computer word used to represent a value. IEEE 754 allocates a majority of bits for

the significand, allowing for the use of a combination of negative powers of two to

represent fractions.

3.2 Floating Point and Two’s Complement can represent the same total amount of

numbers (any reals, integer, etc.) given the same number of bits.

False. Floating Point can represent infinities as well as NaNs, so the total amount of

representable numbers is lower than Two’s Complement, where every bit combination

maps to a unique integer value.

3.3 The distance between floating point numbers increases as the absolute value of the

numbers increase.

True. The uneven spacing is due to the exponent representation of floating point

numbers. There are a fixed number of bits in the significand. In IEEE 32 bit

storage there are 23 bits for the significand, which means the LSB represents 2−23

times 2 to the exponent. For example, if the exponent is zero (after allowing

for the offset) the difference between two neighboring floats will be 2−23. If the

exponent is 8, the difference between two neighboring floats will be 2−15 because the

mantissa is multiplied by 28. Limited precision makes binary floating-point numbers

discontinuous; there are gaps between them.

3.4 Floating Point addition is associative.

False. Because of rounding errors, you can find Big and Small numbers such that:

(Small + Big) + Big != Small + (Big + Big)

FP approximates results because it only has 23 bits for Significand.

4 Floating Point
The IEEE 754 standard defines a binary representation for floating point values

using three fields.

• The sign determines the sign of the number (0 for positive, 1 for negative).
• The exponent is in biased notation. For instance, the bias is -127 which

comes from -(28−1 − 1) for single-precision floating point numbers.
• The significand or mantissa is akin to unsigned integers, but used to store a

fraction instead of an integer.

The below table shows the bit breakdown for the single precision (32-bit) represen-

tation. The leftmost bit is the MSB and the rightmost bit is the LSB.

1 8 23

Sign Exponent Mantissa/Significand/Fraction
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For normalized floats:

Value = (−1)Sign ∗ 2Exp+Bias ∗ 1.significand2

For denormalized floats:

Value = (−1)Sign ∗ 2Exp+Bias+1 ∗ 0.significand2

Exponent Significand Meaning

0 Anything Denorm

1-254 Anything Normal

255 0 Infinity

255 Nonzero NaN

Note that in the above table, our exponent has values from 0 to 255. When

translating between binary and decimal floating point values, we must remember

that there is a bias for the exponent.

4.1 Convert the following single-precision floating point numbers from hexadecimal

to decimal or from decimal to hexadecimal. You may leave your answer as an

expression.

• 0x00000000

0

• 8.25

0x41040000

• 0x00000F00

(2−12 + 2−13 + 2−14 + 2−15) ∗ 2−126

• 39.5625

0x421E4000

• 0xFF94BEEF

NaN

• -∞

0xFF800000

• 1/3

N/A — Impossible to actually rep-

resent, we can only approximate it

We’ll go more into depth with converting 8.25 and 0x00000F00. For the sake of

brevity, the rest of the conversions can be done using the same process.

To convert 8.25 into binary, we first split up our 32b hexadecimal number into three

parts. The sign is positive, so our sign bit −1S will be 0. Then, we can solve for

our significand. We know that our number will have a non-zero exponent, so we

will have a leading 1 for our mantissa. Splitting 8.25 into its integer and decimal

portions, we can determine that 8 will be encoded in binary as 1000. and 0.25 will

be .01 (the 1 corresponds to the 2−2 place), so by implying the MSB, our significand

will be 00001000.. Finally, we can solve for the exponent. As our leading 1 is in

the 23 place to encode 8, we must use the bias in reverse to find what exponent

we encode in binary. 130 added with a bias of -127 results in 3, so our exponent is

0b10000010. Our final binary number concatenated is 0 100 0001 0 000 0100 0000

0000 0000 0000, or 0x41040000.

For 0x00000F00, splitting up the hexadecimal gives us a sign bit and exponent bit

of 0, and a significand of 0b 000 0000 0000 1111 0000 0000. We now know that

this will be some sort of denormalized positive number. We can find out the true
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exponent by adding the bias + 1 to get the actual exponent of −126. Then, we can

evaluate the mantissa by inspecting the bits that are 1 to the right of the radix point,

and finding the corresponding negative power of two. This results in the mantissa

evaluated as 2−12 + 2−13 + 2−14 + 2−15. Combining these get the extremely small

number (−1)0 ∗ 2−126 ∗ (2−12 + 2−13 + 2−14 + 2−15)

5 More Floating Point Representation
As we saw above, not every number can be represented perfectly using floating point.

For this question, we will only look at positive numbers.

5.1 What is the next smallest number larger than 2 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 2 = 2 + 2−22

5.2 What is the next smallest number larger than 4 that can be represented completely?

For this question, you increment the number by the smallest amount possible. This

is the same as incrementing the significand by 1 at the rightmost location.

(1 + 2−23) ∗ 4 = 4 + 2−21

5.3 What is the largest odd number that we can represent? Hint: At what power can

we only represent even numbers?

To find the largest odd number we can represent, we want to find when odd numbers

will stop appearing. This will be when the LSB will have a step size of 2, subtracted

by 1. After this number, only even numbers can be represented in floating point.

We can think of each binary digit in the significant as corresponding to a different

power of 2 to get to a final sum. For example, 0b1011 can be evaluated as 23+21+20,

where the MSB is the 3rd bit and corresponds to 23 and the LSB is the 0th bit at 20.

We want our LSB to correspond to 21, so by counting the number of mantissa bits

(23) and including the implicit 1, we get a total exponent of 24. The smallest number

with this power would have a mantissa of 00..00, so after taking in account the

implicit 1 and subtracting, this gives 224 − 1


	Pre-Check: Memory in C
	Memory Management
	Pre-Check: Floating Point
	Floating Point
	More Floating Point Representation

